martes, 7 de octubre de 2008

DIAGRAMA DE ARBOL

DIAGRAMA DE ARBOL
Un diagrama de árbol es una representación gráfica que muestra los resultados posibles de una serie de experimentos y sus respectivas probabilidades.
I.II.I Construcción Del Diagrama De Árbol
Sean: A={2,6,0} y B={3,7}
a) Fijar un nodo inicial (Un punto situado a la izquierda, representa la raíz del árbol);
b) Abrir a partir del mismo, tantas ramas como elementos tenga el conjunto A;
c) Abrir a partir de cada una de estas, tantas ramas como elementos tenga el conjunto B;
d) Leer el conjunto ordenado resultante sobre cada secuencia de ramas.
‘+’‘’INSTITUTO TECNOLÓGICO DE LEÓN.Licenciatura en Administración Camarena Monjaraz Columba’‘’+’
I. DIAGRAMA DE ARBOL.
Un diagrama de árbol es una representación gráfica de un experimento que consta de r pasos, donde cada uno de los pasos tiene un número finito de maneras de ser llevado a cabo.
Ejemplos:
1.Un médico general clasifica a sus pacientes de acuerdo a: su sexo (masculino o femenino), tipo de sangre (A, B, AB u O) y en cuanto a la presión sanguínea (Normal, Alta o Baja). Mediante un diagrama de árbol diga en cuantas clasificaciones pueden
estar los pacientes de este médico?
N
Solución:
Si contamos todas las ramas terminales, nos damos cuenta que el número de clasificaciones son 2 x 4 x 3 = 24 mismas que podemos enumerar;
MAN, MAA, MAB, MBN, MBA, MBB, etc, etc.
1) Dos equipos denominados A y B se disputan la final de un partido de baloncesto, aquel equipo que gane dos juegos seguidos o complete un total de tres juegos ganados será el que gane el torneo. Mediante un diagrama de árbol diga de cuantas maneras puede ser ganado este torneo,
Solución:
A = gana el equipo A
B = gana el equipo B
En este diagrama se muestran que hay solo diez maneras de que se gane el torneo, que se obtienen contando las ramas terminales de este diagrama de árbol, las que es posible enumerar;
AA, ABB, ABAA, ABABA, ABABB, etc, etc.
2) Un hombre tiene tiempo de jugar ruleta cinco veces como máximo, él empieza a jugar con un dólar, apuesta cada vez un dólar y puede ganar o perder en cada juego un dólar, él se va a retirar de jugar si pierde todo su dinero, si gana tres dólares (esto es si completa un total de cuatro dólares) o si completa los cinco juegos, mediante un diagrama de árbol, diga cuántas maneras hay de que se efectué el juego de este hombre.
Solución:
Si contamos las ramas terminales nos daremos cuenta que hay 11 maneras de que este hombre lleve a cabo sus apuestas, en este diagrama se han representado los cinco juegos o apuestas que este hombre tiene tiempo de jugar.
. DIAGRAMA DE ARBOL.
Un diagrama de árbol es una representación gráfica de un experimento que consta de r pasos, donde cada uno de los pasos tiene un número finito de maneras de ser llevado a cabo.
Ejemplos:
1.Un médico general clasifica a sus pacientes de acuerdo a: su sexo (masculino o femenino), tipo de sangre (A, B, AB u O) y en cuanto a la presión sanguínea (Normal, Alta o Baja). Mediante un diagrama de árbol diga en cuantas clasificaciones pueden
estar los pacientes de este médico?
N
Solución: A
A B
N
B A
B
M AB N
A
O B


A
N
F B A
B
AB
B
O A

B

Si contamos todas las ramas terminales, nos damos cuenta que el número de clasificaciones son 2 x 4 x 3 = 24 mismas que podemos enumerar;
MAN, MAA, MAB, MBN, MBA, MBB, etc, etc.
1) Dos equipos denominados A y B se disputan la final de un partido de baloncesto, aquel equipo que gane dos juegos seguidos o complete un total de tres juegos ganados será el que gane el torneo. Mediante un diagrama de árbol diga de cuantas maneras puede ser ganado este torneo,
Solución:

A = gana el equipo A
B = gana el equipo B
A
A
A A
B A
B
B B





A
A A
A
B B B
B
B
En este diagrama se muestran que hay solo diez maneras de que se gane el torneo, que se obtienen contando las ramas terminales de este diagrama de árbol, las que es posible enumerar;
AA, ABB, ABAA, ABABA, ABABB, etc, etc.
2) Un hombre tiene tiempo de jugar ruleta cinco veces como máximo, él empieza a jugar con un dólar, apuesta cada vez un dólar y puede ganar o perder en cada juego un dólar, él se va a retirar de jugar si pierde todo su dinero, si gana tres dólares (esto es si completa un total de cuatro dólares) o si completa los cinco juegos, mediante un diagrama de árbol, diga cuántas maneras hay de que se efectué el juego de este hombre.
Solución:

$4 G $4
G $3
$3 G
G P $2
P G$3
$2 P
$1 P $0
$3 G $4
$2 G
$1 G $2
G P $2
G $2
P P
$1 P $1
P $0 P $0
$0
Si contamos las ramas terminales nos daremos cuenta que hay 11 maneras de que este hombre lleve a cabo sus apuestas, en este diagrama se han representado los cinco juegos o apuestas que este hombre tiene tiempo de jugar.

PERMUTACIONES Y CONVINACIONES

D) PERMUTACIONES.



Para entender lo que son las permutaciones es necesario definir lo que es una combinación y lo que es una permutación para establecer su diferencia y de esta manera entender claramente cuando es posible utilizar una combinación y cuando utilizar una permutación al momento de querer cuantificar los elementos de algún evento.





COMBINACIÓN Y PERMUTACION.



COMBINACIÓN:

Es todo arreglo de elementos en donde no nos interesa el lugar o posición que ocupa cada uno de los elementos que constituyen dicho arreglo.



PERMUTACIÓN:

Es todo arreglo de elementos en donde nos interesa el lugar o posición que ocupa cada uno de los elementos que constituyen dicho arreglo.



Para ver de una manera objetiva la diferencia entre una combinación y una permutación, plantearemos cierta situación.



Suponga que un salón de clase está constituido por 35 alumnos. a) El maestro desea que tres de los alumnos lo ayuden en actividades tales como mantener el aula limpia o entregar material a los alumnos cuando así sea necesario.



b) El maestro desea que se nombre a los representantes del salón (Presidente, Secretario y Tesorero).



Solución:

a) Suponga que por unanimidad se ha elegido a Daniel, Arturo y a Rafael para limpiar el aula o entregar material, (aunque pudieron haberse seleccionado a Rafael, Daniel y a Enrique, o pudo haberse formado cualquier grupo de tres personas para realizar las actividades mencionadas anteriormente).

¿Es importante el orden como se selecciona a los elementos que forma el grupo de tres personas?

Reflexionando al respecto nos damos cuenta de que el orden en este caso no tiene importancia, ya que lo único que nos interesaría es el contenido de cada grupo, dicho de otra forma, ¿quiénes están en el grupo? Por tanto, este ejemplo es una combinación, quiere decir esto que las combinaciones nos permiten formar grupos o muestras de elementos en donde lo único que nos interesa es el contenido de los mismos.



b) Suponga que se han nombrado como representantes del salón a Daniel como Presidente, a Arturo como secretario y a Rafael como tesorero, pero resulta que a alguien se le ocurre hacer algunos cambios, los que se muestran a continuación:






CAMBIOS

PRESIDENTE:


Daniel


Arturo


Rafael


Daniel

SECRETARIO:


Arturo


Daniel


Daniel


Rafael

TESORERO:


Rafael


Rafael


Arturo


Arturo



Ahora tenemos cuatro arreglos, ¿se trata de la misma representación?



Creo que la respuesta sería no, ya que el cambio de función que se hace a los integrantes de la representación original hace que definitivamente cada una de las representaciones trabaje de manera diferente, ¿importa el orden de los elementos en los arreglos?. La respuesta definitivamente sería sí, luego entonces las representaciones antes definidas son diferentes ya que el orden o la forma en que se asignan las funciones sí importa, por lo tanto es este caso estamos tratando con permutaciones.



A continuación obtendremos las fórmulas de permutaciones y de combinaciones, pero antes hay que definir lo que es n! (ene factorial), ya que está involucrado en las fórmulas que se obtendrán y usarán para la resolución de problemas.



n!= al producto desde la unidad hasta el valor que ostenta n.

n!= 1 x 2 x 3 x 4 x...........x n



Ejem.

10!=1 x 2 x 3 x 4 x.........x 10=3,628,800

8!= 1 x 2 x 3 x 4 x.........x 8=40,320

6!=1 x 2 x 3 x 4 x..........x 6=720, etc., etc.



Obtención de fórmula de permutaciones.

Para hacer esto, partiremos de un ejemplo.

¿Cuántas maneras hay de asignar los cuatro primeros lugares de un concurso de creatividad que se verifica en las instalaciones de nuestro instituto, si hay 14 participantes?



Solución:

Haciendo uso del principio multiplicativo,



14x13x12x11 = 24,024 maneras de asignar los primeros tres lugares del concurso



Esta solución se debe, a que al momento de asignar el primer lugar tenemos a 14 posibles candidatos, una vez asignado ese lugar nos quedan 13 posibles candidatos para el segundo lugar, luego tendríamos 12 candidatos posibles para el tercer lugar y por último tendríamos 11 candidatos posibles para el cuarto lugar.



Luego si n es el total de participantes en el concurso y r es el número de participantes que van a ser premiados, y partiendo de la expresión anterior, entonces.





14x13x12x11= n x (n - 1) x (n - 2) x .......... x (n – r + 1)



si la expresión anterior es multiplicada por (n – r)! / (n – r)!, entonces



= n x (n –1 ) x (n – 2) x ......... x (n – r + 1) (n – r)! / (n – r)!



= n!/ (n – r)!



Por tanto, la fórmula de permutaciones de r objetos tomados de entre n objetos es:











Esta fórmula nos permitirá obtener todos aquellos arreglos en donde el orden es importante y solo se usen parte (r) de los n objetos con que se cuenta, además hay que hacer notar que no se pueden repetir objetos dentro del arreglo, esto es, los n objetos son todos diferentes.



Entonces, ¿ qué fórmula hay que usar para arreglos en donde se utilicen los n objetos con que se cuenta?

Si en la fórmula anterior se sustituye n en lugar de r, entonces.





nPn= n!/ (n –n)! = n! / 0! = n! / 1 = n!


Como 0! = 1 de acuerdo a demostración matemática, entonces





nPn= n!



Ejemplos:

1) ¿Cuantas representaciones diferentes serán posibles formar, si se desea que consten de Presidente, Secretario, Tesorero, Primer Vocal y Segundo Vocal?, sí esta representación puede ser formada de entre 25 miembros del sindicato de una pequeña empresa.



Solución:



Por principio multiplicativo:



25 x 24 x 23 x 22 x 21 = 6,375,600 maneras de formar una representación de ese sindicato que conste de presidente, secretario, etc., etc.





Por Fórmula:





n = 25, r = 5



25P5 = 25!/ (25 –5)! = 25! / 20! = (25 x 24 x 23 x 22 x 21 x....x 1) / (20 x 19 x 18 x ... x 1)=

= 6,375,600 maneras de formar la representación





2) a. ¿Cuántas maneras diferentes hay de asignar las posiciones de salida de 8 autos que participan en una carrera de fórmula uno? (Considere que las posiciones de salida de los autos participantes en la carrera son dadas totalmente al azar) b. ¿Cuántas maneras diferentes hay de asignar los primeros tres premios de esta carrera de fórmula uno?



Solución:



a. Por principio multiplicativo:



8 x 7 x 6 x 5 x 4 x 3 x 2 x 1= 40,320 maneras de asignar las posiciones de salida de los autos participantes en la carrera



Por Fórmula:



n = 8, r = 8



8P8= 8! = 8 x 7 x 6 x 5 x 4 x......x 1= 40,320 maneras de asignar las posiciones de salida ......etc., etc.





b. Por principio multiplicativo:



8 x 7 x 6 = 336 maneras de asignar los tres primeros lugares de la carrera





Por fórmula:



n =8, r = 3



8P3 = 8! / (8 – 3)! = 8! / 5! = (8 x 7 x 6 x 5 x ........x1)/ (5 x 4 x 3 x......x1) = 336 maneras de asignar los tres primeros lugares de la carrera





3) ¿Cuántos puntos de tres coordenadas ( x, y, z ), será posible generar con los dígitos 0, 1, 2, 4, 6 y 9?, Si, a. No es posible repetir dígitos, b. Es posible repetir dígitos.



Solución:



a. Por fórmula

n = 6, r = 3



6P3 = 6! / (6 – 3)! = 6! / 3! = 6 x 5 x 4 x 3! / 3! = 6 x 5 x 4 = 120 puntos posibles



Nota: este inciso también puede ser resuelto por el principio multiplicativo



b. Por el principio multiplicativo



6 x 6 x 6 = 216 puntos posibles



¿Cuál es la razón por la cuál no se utiliza en este caso la fórmula?. No es utilizada debido a que la fórmula de permutaciones sólo se usa cuando los objetos no se repiten, esto quiere decir que en el inciso a. Los puntos generados siempre van a tener coordenadas cuyos valores son diferentes ejem. (1, 2, 4), (2, 4, 6), (0, 4, 9), etc. etc., mientras que los puntos generados en el inciso b. Las coordenadas de los puntos pueden tener valores diferentes o repeticiones de algunos valores o pueden tener todas las coordenadas un mismo valor ejem. (1, 2, 4), (1, 2, 2), (1, 1, 1), etc., etc.





4) a. ¿Cuántas maneras hay de asignar las 5 posiciones de juego de un equipo de básquetbol, si el equipo consta de 12 integrantes?, b. ¿Cuántas maneras hay de asignar las posiciones de juego si una de ellas solo puede ser ocupada por Uriel José Esparza?, c. ¿Cuántas maneras hay de que se ocupen las posiciones de juego si es necesario que en una de ellas este Uriel José Esparza y en otra Omar Luna?





Solución:



a. Por fórmula:



n = 12, r = 5



12P5 = 12! / (12 – 5 )! = 12 x 11 x 10 x 9 x 8 = 95,040 maneras de asignar las cinco posiciones de juego





a. Por principio multiplicativo:



1 x 11 x 10 x 9 x 8 =7,920 maneras de asignar las posiciones de juego





Por fórmula:



1 x 11P4 = 1 x 11! / (11 – 4)! = 11! / 7! = 11 x 10 x 9 x 8 = 7,920 maneras de asignar las posiciones de juego con Uriel José en una determinada posición





a. Por principio multiplicativo



1 x 1 x 10 x 9 x 8 = 720 maneras de ocupar las diferentes posiciones de juego





Por fórmula:



1 x 1 x 10P3 = 1 x 1 x 10! / (10 – 3)! = 10! / 7! = 10 x 9 x 8 = 720 maneras de ocupar las posiciones de juego con Uriel José y Omar Luna en posiciones previamente definidas



5) Cuántas claves de acceso a una computadora será posible diseñar, si debe constar de dos letras, seguidas de cinco dígitos, las letras serán tomadas del abecedario y los números de entre los dígitos del 0 al 9. a. Considere que se pueden repetir letras y números, b. Considere que no se pueden repetir letras y números, c. ¿Cuántas de las claves del inciso b empiezan por la letra A y terminan por el número 6?, d. ¿Cuántas de las claves del inciso b tienen la letra R seguida de la L y terminan por un número impar?





Solución:



a. Por principio multiplicativo:





26 x 26 x 10 x 10 x 10 x 10 x 10 = 67,600,000 claves de acceso



Por fórmula:





26P2 x 10P5 = 26 x 25 x 10 x 9 x 8 x 7 x 6=19,656,000 claves de acceso



a. Por fórmula:





1 x 25P1 x 9P4 x 1 = 1 x 25 x 9 x 8 x 7 x 6 x 1 = 75,600 claves de acceso que empiezan por la letra A y terminan por el número 6





b. Por fórmula:





1 x 1 x 9P4 x 5 = 1 x 1 x 9 x 8 x 7 x 6 x 5 =15,120 claves de acceso que tienen la letra R seguida de la L y terminan por un número impar.

ESPACIO MUESTRAL

Espacio muestral
Definición
En estadística se llama espacio muestral al conjunto de todos los posibles resultados individuales de un experimento aleatorio. Se suele representar por Ω.
Sus elementos se representan por letras minúsculas (w1,w2,...) y se denominan eventos o sucesos elementales. Los subconjuntos de Ω se designan por medio de letras mayúsculas (A,B,C,D,...) y se denominan eventos o sucesos. Los sucesos representan los posibles resultados del experimento aleatorio.
Tipos de espacio muestral
Un espacio muestral Ω es discreto, cuando Ω es un conjunto discreto, es decir, finito o numerable; y es continuo, cuando no es numerable.
Particiones
Es posible definir particiones sobre el espacio muestral. Formalmente hablando, una partición sobre Ω se define como un conjunto numerable:
tal que
1.
2.
3.
Ejemplos
Por ejemplo, en el caso del experimento aleatorio "lanzar un dado", el espacio muestral del experimento sería: Ω={1,2,3,4,5,6}. Por otro lado, si cambiamos ligeramente la experiencia pensando en el número resultante de la suma de 2 dados, entonces tenemos 2 espacios muestrales:
Ω={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),...(6,6)} = {1,2,3,4,5,6}x{1,2,3,4,5,6}
Ω'={2,3,4,...,12}

La elección del espacio muestral es un factor determinante para realizar el cálculo de la probabilidad de un suceso.

TEORIA DE LA PROBABILIDAD

Teoría de la probabilidad
De Wikipedia, la enciclopedia libre
La teoría de la probabilidad es la teoría matemática que modela los fenómenos aleatorios. Estos deben contraponerse a los fenómenos determinísticos, en los cuales el resultado de un experimento, realizado bajo condiciones determinadas, produce un resultado único o previsible: por ejemplo, el agua calentada a 100 grados centígrados, a presión normal, se transforma en vapor. Un fenómeno aleatorio es aquel que, a pesar de realizarse el experimento bajo las mismas condiciones determinadas, tiene como resultados posibles un conjunto de alternativas, como el lanzamiento de un dado o de una moneda.
Los procesos reales que se modelizan como procesos aleatorios pueden no serlo realmente; cómo tirar una moneda o un dado no son procesos aleatorios en sentido estricto, ya que no se reproducen exactamente las mismas condiciones iniciales que lo determinan, sino sólo unas pocas. En los procesos reales que se modelizan mediante distribuciones de probabilidad corresponden a modelos complejos donde no se conocen a priori todos los parámetros que intervienen; ésta es una de las razones por las cuales la estadística, que busca determinar estos parámetros, no se reduce inmediatamente a la teoría de la probabilidad en sí.
En 1933, el matemático soviético Andréi Kolmogórov propuso un sistema de axiomas para la teoría de la probabilidad, basado en la teoría de conjuntos y en la teoría de la medida, desarrollada pocos años antes por Lebesgue, Borel y Frechet entre otros.
Esta aproximación axiomática que generaliza el marco clásico de la probabilidad, la cual obedece a la regla de cálculo de casos favorables sobre casos posibles, permitió la rigorización de muchos argumentos ya utilizados, así como el estudio de problemas fuera de los marcos clásicos. Actualmente, la teoría de la probabilidad encuentra aplicación en las más variadas ramas del conocimiento, como puede ser la física (donde corresponde mencionar el desarrollo de las difusiones y el movimiento Browniano), o las finanzas (donde destaca el modelo de Black y Scholes para la valuación de acciones).
Definición clásica de probabilidad
La probabilidad es la característica de un evento, que existen razones para creer que este se realizará. Los eventos tienden a ser una frecuencia relativa del número de veces que se realiza el experimento.
La probabilidad p de que suceda un evento S de un total de n casos posibles igualmente probables es igual a la razón entre el número de ocurrencias h de dicho evento (casos favorables) y el número total de casos posibles n.

La probabilidad es un número (valor) que varia entre 0 y 1. Cuando el evento es imposible se dice que su probabilidad es 0 y el evento es cierto cuando siempre tiene que ocurrir y su probabilidad es 1. La probabilidad de no ocurrencia de un evento está dada por que donde:

Simbólicamente el espacio de resultados, que normalmente se denota por Ω, es el espacio que consiste en todos los resultados que son posibles. Los resultados, que se denota por ω1,ω2, etcétera, son elementos del espacio Ω.
Definición según la frecuencia relativa y definición axiomática
Según Spiegel (1) la definición clásica de la probabilidad se define con base a sí misma (igualmente factible es sinónimo de igualmente probable) se define la probabilidad estimada o empírica basada en la frecuencia relativa de aparición de un suceso S cuando Ω es muy grande. La probabilidad de un suceso es una medida que se escribe como
,
y mide con qué frecuencia ocurre algún suceso si se hace algún experimento indefinidamente.
La definición anterior es complicada de representar matemáticamente ya que Ω debiera ser infinito. Otra manera de definir la probabilidad es de forma axiomática esto estableciendo las relaciones o propiedades que existen entre los conceptos y operaciones que la componen.
Probabilidad discreta
Este tipo de probabilidad, es aquel que puede tomar sólo ciertos valores diferentes que son el resultado de la cuenta de alguna característica de interés.
Estos Valores pueden ser de varios tipos ya sean Finitos o Infinitos, Numerables o innumerables

EJEMPLO 1: sea X el número de caras obtenidas al lanzar 3 veces una moneda. Aquí los valores de X son x = 0, 1, 2, 3
Como se muestra en el ejemplo 1 estos valores son Numerables, y Finitos, ya que se nos da un numero de especifico de casos y solo nos pueden dar un numero especifico de resultados.
Probabilidad continua
Una variable aleatoria es una función

que da un valor numérico a cada suceso en Ω.
Función de densidad [editar]
Artículo principal: Función de densidad
La función de densidad, o densidad de probabilidad de una variable aleatoria, es una función a partir de la cual se obtiene la probabilidad de cada valor que toma la variable. Su integral en el caso de variables aleatorias continuas es la distribución de probabilidad. En el caso de variables aleatorias discretas la distribución de probabilidad se obtiene a través del sumatorio de la función de densidad.
Probabilidad condicional
Se llama probabilidad condicional a la ,,probabilidad de que un suceso se cumpla habiéndose cumplido ya otro. Se nota "probabilidad de A sabiendo que B se ha cumplido" de la siguiente manera:
pB(A) ó p(A\B)
Dicha probabilidad se calculará de la siguiente forma:

2 UNIDAD **PROOBABILIDAD**

Probabilidad
De Wikipedia, la enciclopedia libre
La probabilidad mide la frecuencia con la que ocurre un resultado en un experimento bajo condiciones suficientemente estables. La teoría de la probabilidad se usa extensamente en áreas como la estadística, la matemática, la ciencia y la filosofía para sacar conclusiones sobre la probabilidad de sucesos potenciales y la mecánica subyacente de sistemas complejos.
Interpretaciones
La palabra probabilidad no tiene una definición consistente. De hecho hay dos amplias categorías de interpretaciones de la probabilidad: los frecuentistas hablan de probabilidades sólo cuando se trata de experimentos aleatorios bien definidos. La frecuencia relativa de ocurrencia del resultado de un experimento, cuando se repite el experimento, es una medida de la probabilidad de ese suceso aleatorio. Los bayesianos, no obstante, asignan las probabilidades a cualquier declaración, incluso cuando no implica un proceso aleatorio, como una manera de representar su verosimilitud subjetiva.
HistoriA] [
El estudio científico de la probabilidad es un desarrollo moderno. Los juegos de azar muestran que ha habido un interés en cuantificar las ideas de la probabilidad durante milenios, pero las descripciones matemáticas exactas de utilidad en estos problemas sólo surgieron mucho después.
Según Richard Jeffrey, "Antes de la mitad del siglo XVII, el término 'probable' (en latín probable) significaba aprobable, y se aplicaba en ese sentido, unívocamente, a la opinión y a la acción. Una acción u opinión probable era una que las personas sensatas emprenderían o mantendrían, en las circunstancias."[1]
Aparte de algunas consideraciones elementales hechas por Girolamo Cardano en el siglo XVI, la doctrina de las probabilidades data de la correspondencia de Pierre de Fermat y Blaise Pascal (1654). Christiaan Huygens (1657) le dio el tratamiento científico conocido más temprano al concepto. Ars Conjectandi (póstumo, 1713) de Jakob Bernoulli y Doctrine of Chances (1718) de Abraham de Moivre trataron el tema como una rama de las matemáticas. Véase El surgimiento de la probabilidad (The Emergence of Probability) de Ian Hacking para una historia de los inicios del desarrollo del propio concepto de probabilidad matemática.
La teoría de errores puede trazarse atrás en el tiempo hasta Opera Miscellanea (póstumo, 1722) de Roger Cotes, pero una memoria preparada por Thomas Simpson en 1755 (impresa en 1756) aplicó por primera vez la teoría para la discusión de errores de observación. La reimpresión (1757) de esta memoria expone los axiomas de que los errores positivos y negativos son igualmente probables, y que hay ciertos límites asignables dentro de los cuales se supone que caen todos los errores; se discuten los errores continuos y se da una curva de la probabilidad.
Pierre-Simon Laplace (1774) hizo el primer intento para deducir una regla para la combinación de observaciones a partir de los principios de la teoría de las probabilidades. Representó la ley de la probabilidad de error con una curva y = φ(x), siendo x cualquier error e y su probabilidad, y expuso tres propiedades de esta curva:
1. es simétrica al eje y;
2. el eje x es una asíntota, siendo la probabilidad del error igual a 0;
3. la superficie cerrada es 1, haciendo cierta la existencia de un error.
Dedujo una fórmula para la media de tres observaciones. También obtuvo (1781) una fórmula para la ley de facilidad de error (un término debido a Lagrange, 1774), pero una que llevaba a ecuaciones inmanejables. Daniel Bernoulli (1778) introdujo el principio del máximo producto de las probabilidades de un sistema de errores concurrentes.
El método de mínimos cuadrados se debe a Adrien-Marie Legendre (1805), que lo introdujo en su Nouvelles méthodes pour la détermination des orbites des comètes (Nuevos métodos para la determinación de las órbitas de los cometas). Ignorando la contribución de Legendre, un escritor irlandés estadounidense, Robert Adrain, editor de "The Analyst" (1808), dedujo por primera vez la ley de facilidad de error,

siendo c y h constantes que dependen de la precisión de la observación. Expuso dos demostraciones, siendo la segunda esencialmente la misma de John Herschel (1850). Gauss expuso la primera demostración que parece que se conoció en Europa (la tercera después de la de Adrain) en 1809. Demostraciones adicionales se expusieron por Laplace (1810, 1812), Gauss (1823), James Ivory (1825, 1826), Hagen (1837), Friedrich Bessel (1838), W. F. Donkin (1844, 1856) y Morgan Crofton (1870). Otros personajes que contribuyeron fueron Ellis (1844), De Morgan (1864), Glaisher (1872) y Giovanni Schiaparelli (1875). La fórmula de Peters (1856) para r, el error probable de una única observación, es bien conocida.
En el siglo XIX, los autores de la teoría general incluían a Laplace, Sylvestre Lacroix (1816), Littrow (1833), Adolphe Quetelet (1853), Richard Dedekind (1860), Helmert (1872), Hermann Laurent (1873), Liagre, Didion, y Karl Pearson. Augustus De Morgan y George Boole mejoraron la exposición de la teoría.
En la parte geométrica (véase geometría integral) los colaboradores de The Educational Times fueron influyentes (Miller, Crofton, McColl, Wolstenholme, Watson y Artemas Martin).
Teoría
La probabilidad constituye un importante parametro en la determinacion de las diversas causalidades obtenidas tras una serie de eventos esperados dentro de un rango estadistico.
Existen diversas formas como metodo abstracto, como la teoría Dempster-Shafer y la teoría de la relatividad numerica, esta ultima con un alto grado de aceptacion si se toma en cuenta que disminuye considerablemente las posibilidades hasta un nivel minimo ya que somete a todas las antiguas reglas a una simple ley de relatividad. asi mismo es la parte de lae
Aplicaciones
Dos aplicaciones principales de la teoría de la probabilidad en el día a día son en el análisis de riesgo y en el comercio de los mercados de materias primas. Los gobiernos normalmente aplican métodos probabilísticos en regulación ambiental donde se les llama "análisis de vías de dispersión", y a menudo miden el bienestar usando métodos que son estocásticos por naturaleza, y escogen qué proyectos emprender basándose en análisis estadísticos de su probable efecto en la población como un conjunto. No es correcto decir que la estadística está incluida en el propio modelado, ya que típicamente los análisis de riesgo son para una única vez y por lo tanto requieren más modelos de probabilidad fundamentales, por ej. "la probabilidad de otro 11-S". Una ley de números pequeños tiende a aplicarse a todas aquellas elecciones y percepciones del efecto de estas elecciones, lo que hace de las medidas probabilísticas un tema político.
Un buen ejemplo es el efecto de la probabilidad percibida de cualquier conflicto generalizado sobre los precios del petróleo en Oriente Medio - que producen un efecto dominó en la economía en conjunto. Un cálculo por un mercado de materias primas en que la guerra es más probable en contra de menos probable probablemente envía los precios hacia arriba o hacia abajo e indica a otros comerciantes esa opinión. Por consiguiente, las probabilidades no se calculan independientemente y tampoco son necesariamente muy racionales. La teoría de las finanzas conductuales surgió para describir el efecto de este pensamiento de grupo en el precio, en la política, y en la paz y en los conflictos.
Se puede decir razonablemente que el descubrimiento de métodos rigurosos para calcular y combinar los cálculos de probabilidad ha tenido un profundo efecto en la sociedad moderna. Por consiguiente, puede ser de alguna importancia para la mayoría de los ciudadanos entender cómo se cálculan los pronósticos y las probabilidades, y cómo contribuyen a la reputación y a las decisiones, especialmente en una democracia.
Otra aplicación significativa de la teoría de la probabilidad en el día a día es en la fiabilidad. Muchos bienes de consumo, como los automóviles y la electrónica de consumo, utilizan la teoría de la fiabilidad en el diseño del producto para reducir la probabilidad de avería. La probabilidad de avería también está estrechamente relacionada con la garantía del producto.
Se puede decir que no existe una cosa llamada probabilidad. También se puede decir que la probabilidad es la medida de nuestro grado de incertidumbre, o esto es, el grado de nuestra ignorancia dada una situación. Por consiguiente, puede haber una probabilidad de 1 entre 52 de que la primera carta en un baraja de cartas es la J de diamantes. Sin embargo, si uno mira la primera carta y la reemplaza, entonces la probabilidad es o bien 100% o 0%, y la elección correcta puede ser hecha con precisión por el que ve la carta. La física moderna proporciona ejemplos importantes de situaciones determinísticas donde sólo la descripción probabilística es factible debido a información incompleta y la complejidad de un sistema así como ejemplos de fenómenos realmente aleatorios.
En un universo determinista, basado en los conceptos newtonianos, no hay probabilidad si se conocen todas las condiciones. En el caso de una ruleta, si la fuerza de la mano y el periodo de esta fuerza es conocido, entonces el número donde la bola parará será seguro. Naturalmente, esto también supone el conocimiento de la inercia y la fricción de la ruleta, el peso, lisura y redondez de la bola, las variaciones en la velocidad de la mano durante el movimiento y así sucesivamente. Una descripción probabilística puede entonces ser más práctica que la mecánica newtoniana para analizar el modelo de las salidas de lanzamientos repetidos de la ruleta. Los físicos se encuentran con la misma situación en la teoría cinética de los gases, donde el sistema determinístico en principio, es tan complejo (con el número de moléculas típicamente del orden de magnitud de la constante de Avogadro ) que sólo la descripción estadística de sus propiedades es viable.
La mecánica cuántica, debido al principio de indeterminación de Heisenberg, sólo puede ser descrita actualmente a través de distribuciones de probabilidad, lo que le da una gran importancia a las descripciones probabilísticas. Algunos científicos hablan de la expulsión del paraíso.[cita requerida] Otros no se conforman con la pérdida del determinismo. Albert Einstein comentó estupendamente en una carta a Max Born: Jedenfalls bin ich überzeugt, daß der Alte nicht würfelt. (Estoy convencido de que Dios no tira el dado). No obstante hoy en día no existe un medio mejor para describir la física cuántica si no es a través de la teoría de la probabilidad. Mucha gente hoy en día confunde el hecho de que la mecánica cuántica se describe a través de distribuciones de probabilidad con la suposición de que es por ello un proceso aleatorio, cuando la mecánica cuántica es probabilística no por el hecho de que siga procesos aleatorios sino por el hecho de no poder determinar con precisión sus parámetros fundamentales, lo que imposibilita la creación de un sistema de ecuaciones determinista.

lunes, 6 de octubre de 2008

MEDIDAS DE POSICION(CUARTILES,PERCETILES ETC)

Medidas de posición**

Las medidas de posición son unos estadísticos que nos sintetizan la información sobre los datos que analizamos, facilitando su manejo. En lugar de trabajar con toda la tabla de frecuencias, las medidas de posición resumen los valores que separan a los datos en grupos significativos. Una medida de posición es un indicador que se usa para señalar qué porcentaje de datos dentro de la muestra se encuentra a un lado y a otro del mismo.
Cuartiles
Dados una serie de valores X1,X2,X3...Xn ordenados en forma creciente,
Definimos:
• Primer cuartil (Q1) como la mediana de la primera mitad de valores.
• Segundo cuartil (Q2) como la propia mediana de la serie.
• Tercer cuartil (Q3) como la mediana de la segunda mitad de valores.
En estadística descriptiva Los cuartiles son los tres valores que dividen al conjunto de datos ordenados en cuatro partes porcentualmente iguales.
Hay tres cuartiles denotados usualmente Q1, Q2, Q3. El segundo cuartil es precisamente la mediana. El primer cuartil, es el valor en el cual o por debajo del cual queda un cuarto (25%) de todos los valores de la sucesión (ordenada); el tercer cuartil, es el valor en el cual o por debajo del cual quedan las tres cuartas partes (75%) de los datos.
Datos Agrupados
Como los cuartiles adquieren su mayor importancia cuando contamos un número grande de datos y tenemos en cuenta que en estos casos generalmente los datos son resumidos en una tabla de frecuencia. La fórmula para el cálculo de los cuartiles cuando se trata de datos agrupados es la siguiente: k= 1,2,3
Donde:
• Lk = Límite real inferior de la clase del cuartil k
• n = Número de datos
• Fk = Frecuencia acumulada de la clase que antecede a la clase del cuartil k.
• fk = Frecuencia de la clase del cuartil k
• c = Longitud del intervalo de la clase del cuartil k
Si se desea calcular cada cuartil individualmente, mediante otra fórmula se tiene lo siguiente:
• El primer cuartil Q1, es el menor valor que es mayor que una cuarta parte de los datos; es decir, aquel valor de la variable que supera 25% de las observaciones y es superado por el 75% de las observaciones.
Fórmula de Q1, para series de Datos agrupados:
Donde:
• L1 = limite inferior de la clase que lo contiene
• P = valor que representa la posición de la medida
• f1 = la frecuencia de la clase que contiene la medida solicitada.
• Fa-1 = frecuencia acumulada anterior a la que contiene la medida solicitada.
• Ic = intervalo de clase

• El segundo cuartil Q2, (coincide, es idéntico o similar a la mediana, Q2 = Md), es el menor valor que es mayor que la mitad de los datos, es decir el 50% de las observaciones son mayores que la mediana y el 50% son menores.
Fórmula de Q2, para series de Datos agrupados:
Donde:
• L1 = limite inferior de la clase que lo contiene
• P = valor que representa la posición de la medida
• f1 = la frecuencia de la clase que contiene la medida solicitada.
• Fa-1 = frecuencia acumulada anterior a la que contiene la medida solicitada.
• Ic = intervalo de clase
• El tercer cuartil Q3, es el menor valor que es mayor que tres cuartas partes de los datos, es decir aquel valor de la variable que supera al 75% y es superado por el 25% de las observaciones.
Fórmula de Q3, para series de Datos agrupados:
Donde:
• L1 = limite inferior de la clase que lo contiene
• P = valor que representa la posición de la medida
• f1 = la frecuencia de la clase que contiene la medida solicitada.
• Fa-1 = frecuencia acumulada anterior a la que contiene la medida solicitada.
• Ic = intervalo de clase.
Otra manera de verlo es partir de que todas las medidas no son sino casos particulares del percentil, ya que el primer cuartil es el 25% percentil y el tercer cuartil 75% percentil.
Para Datos No Agrupados
Si se tienen una serie de valores X1, X2, X3 ... Xn, se localiza mediante las siguientes fórmulas:
El primer cuartil:
• Cuando n es par: 1*n/4
• Cuando n es impar: 1(n+1)/4
Para el tercer cuartil
• Cuando n es par: 3*n/4
• Cuando n es impar: 3(n+1)/4
Quintiles
• Se representan con la letra K.
• Es el primer quintil. Separa a la muestra dejando el 20% de los datos a su izquierda.
• Es el segundo quintil. Es el valor que indica que el 40% de los datos son menores.
• Es el tercer quintil. Indica que el 60% de los datos son menores que él.
• Es el cuarto quintil. Separa al 80% de los datos del otro 20%.
Percentiles
• Se representan con la letra C.
• Es el percentil i-ésimo, donde la i toma valores del 1 al 99. El i % de la muestra son valores menores que él y el 100-i % restante son mayores.
Cuando los datos no están agrupados en intervalos los cuartiles, así como el resto de las medidas de posición, tienen un valor claro. Sin embargo, cuando tenemos una agrupación de los datos ya no es tan sencillo realizar el cálculo. Sí que resulta claro ver en cuál de los intervalos está el cuartil (quintil, decil o percentil) buscado, pero para calcular su valor exacto necesitaremos usar una fórmula.
Cálculos en Scilab / MATLAB:
• Los percentiles de un conjunto de datos son calculados con la instrucción “perctl”.
A esta instrucción hay que introducirle dos vectores. Uno de ellos “x” debe contener los datos que queremos procesar y en el otro “y”, valores enteros comprendidos entre el 1 y el 100. La función calcula cuales son los valores de “x” que se corresponden con los percentiles indicados en “y”. Para probar esta función vamos a introducir un vector x que contenga el conjunto de datos con el que queremos trabajar:
x=[7,12,4,8,3,10,11,5,13,1,12,3,5,1,17,4,8,8,7,19,8,1,7,17,4,7,1,7,3,7,3,13,3,4,7,8,10,2,5,11,5,4,3,5,8];
y=[15,25,60,80]
Con esto calcularemos los percentiles 15, 25, 60 y 80 del conjunto de datos del vector “x”
prctile(x,y)
ans =
3. 43.
3.5 5.

POBLACION

POBLACION
Población o Universo: es el total del conjunto de elementos u objetos de los cuales se quiere obtener información. Aquí el término población tiene un significado mucho más amplio que el usual, ya que puede referirse a personas, cosas, actos, áreas geográficas e incluso al tiempo.
La población debe estar perfectamente definida en el tiempo y en el espacio, de modo que ante la presencia de un potencial integrante de la misma, se pueda decidir si forma parte o no de la población bajo estudio. Por lo tanto, al definir una población, se debe cuidar que el conjunto de elementos que la integran quede perfectamente delimitado.